1-10 of 10 Results

  • Keywords: predictability x
Clear all

Article

Edward Hanna and Thomas E. Cropper

Many variations in the weather in the European and North Atlantic regions are linked with changes in the North Atlantic Oscillation (NAO). The NAO is measured using a south-minus-north index of atmospheric surface pressure variation across the North Atlantic and is closely connected with changes in the North Atlantic atmospheric polar jet stream and wider changes in atmospheric circulation. The physical, human, and biological impacts of NAO changes extend well beyond weather and climate, with major economic, social, and environmental effects. The NAO index based on barometric pressure records now extends as far back as 1850, based on recent work. Although there are few significant overall trends in monthly or seasonal NAO (i.e., for the whole record), there are many shorter-term multidecadal variations. A prominent increase in the NAO between the 1960s and 1990s was widely noted in previous work and was thought to be related to human-induced greenhouse gas forcing. However, since then this trend has reversed, with a significant decrease in the summer NAO since the 1990s and a striking increase in variability of the winter—especially December—NAO that has resulted in four of the six highest and two of the five lowest NAO Decembers occurring during 2004–2015 in the 116-year record, with accompanying more variable year-to-year winter weather conditions over the United Kingdom. These NAO changes are related to an increasing trend in the Greenland Blocking Index (GBI; equals high pressure over Greenland) in summer and a significantly more variable GBI in December. Such NAO and related jet stream and blocking changes are not generally present in the current generation of global climate models, although recent process studies offer insights into their possible causes. Several plausible climate forcings and feedbacks, including changes in the sun’s energy output and the Arctic amplification of global warming with accompanying reductions in sea ice, may help explain the recent NAO changes. Recent research also suggests significant skill in being able to make seasonal NAO predictions and therefore long-range weather forecasts for up to several months ahead for northwest Europe. However, global climate models remain unclear on longer-term NAO predictions for the remainder of the 21st century.

Article

The uncovered interest parity (UIP) condition states that the interest rate differential between two currencies is the expected rate of change of their exchange rate. Empirically, however, in the 1976–2018 period, exchange rate changes were approximately unpredictable over short horizons, with a slight tendency for currencies with higher interest rates to appreciate against currencies with lower interest rates. If the UIP condition held exactly, carry trades, in which investors borrow low interest rate currencies and lend high interest rate currencies, would earn zero average profits. The fact that UIP is violated, therefore, is a necessary condition to explain the fact that carry trades earned significantly positive profits in the 1976–2018 period. A large literature has documented the failure of UIP, as well as the profitability of carry trades, and is surveyed here. Additionally, summary evidence is provided here for the G10 currencies. This evidence shows that carry trades have been significantly less profitable since 2007–2008, and that there was an apparent structural break in exchange rate predictability around the same time. A large theoretical literature explores economic explanations of this phenomenon and is briefly surveyed here. Prominent among the theoretical models are ones based on risk aversion, peso problems, rare disasters, biases in investor expectations, information frictions, incomplete financial markets, and financial market segmentation.

Article

This article retrospects the studies of the predictability of El Niño-Southern Oscillation (ENSO) events within the framework of error growth dynamics and reviews the results of previous studies. It mainly covers (a) the advances in methods for studying ENSO predictability, especially those of optimal methods associated with initial errors and model errors; and (b) the applications of these optimal methods in the studies of “spring predictability barrier” (SPB), optimal precursors for ENSO events (or the source of ENSO predictability) and target observations for ENSO predictions. In this context, some of major frontiers and challenges remaining in ENSO predictability are addressed.

Article

Jesús Gonzalo and Jean-Yves Pitarakis

Predictive regressions are a widely used econometric environment for assessing the predictability of economic and financial variables using past values of one or more predictors. The nature of the applications considered by practitioners often involve the use of predictors that have highly persistent, smoothly varying dynamics as opposed to the much noisier nature of the variable being predicted. This imbalance tends to affect the accuracy of the estimates of the model parameters and the validity of inferences about them when one uses standard methods that do not explicitly recognize this and related complications. A growing literature aimed at introducing novel techniques specifically designed to produce accurate inferences in such environments ensued. The frequent use of these predictive regressions in applied work has also led practitioners to question the validity of viewing predictability within a linear setting that ignores the possibility that predictability may occasionally be switched off. This in turn has generated a new stream of research aiming at introducing regime-specific behavior within predictive regressions in order to explicitly capture phenomena such as episodic predictability.

Article

B.N. Goswami and Soumi Chakravorty

Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales. The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient. The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.

Article

Fred Kucharski and Muhammad Adnan Abid

The interannual variability of Indian summer monsoon is probably one of the most intensively studied phenomena in the research area of climate variability. This is because even relatively small variations of about 10% to 20% from the mean rainfall may have dramatic consequences for regional agricultural production. Forecasting such variations months in advance could help agricultural planning substantially. Unfortunately, a perfect forecast of Indian monsoon variations, like any other regional climate variations, is impossible in a long-term prediction (that is, more than 2 weeks or so in advance). The reason is that part of the atmospheric variations influencing the monsoon have an inherent predictability limit of about 2 weeks. Therefore, such predictions will always be probabilistic, and only likelihoods of droughts, excessive rains, or normal conditions may be provided. However, even such probabilistic information may still be useful for agricultural planning. In research regarding interannual Indian monsoon rainfall variations, the main focus is therefore to identify the remaining predictable component and to estimate what fraction of the total variation this component accounts for. It turns out that slowly varying (with respect to atmospheric intrinsic variability) sea-surface temperatures (SSTs) provide the dominant part of the predictable component of Indian monsoon variability. Of the predictable part arising from SSTs, it is the El Niño Southern Oscillation (ENSO) that provides the main part. This is not to say that other forcings may be neglected. Other forcings that have been identified are, for example, SST patterns in the Indian Ocean, Atlantic Ocean, and parts of the Pacific Ocean different from the traditional ENSO region, and springtime snow depth in the Himalayas, as well as aerosols. These other forcings may interact constructively or destructively with the ENSO impact and thus enhance or reduce the ENSO-induced predictable signal. This may result in decade-long changes in the connection between ENSO and the Indian monsoon. The physical mechanism for the connection between ENSO and the Indian monsoon may be understood as large-scale adjustment of atmospheric heatings and circulations to the ENSO-induced SST variations. These adjustments modify the Walker circulation and connect the rising/sinking motion in the central-eastern Pacific during a warm/cold ENSO event with sinking/rising motion in the Indian region, leading to reduced/increased rainfall.

Article

The Atlantic meridional overturning circulation (AMOC) is a large, basin-scale circulation located in the Atlantic Ocean that transports climatically important quantities of heat northward. It can be described schematically as a northward flow in the warm upper ocean and a southward return flow at depth in much colder water. The heat capacity of a layer of 2 m of seawater is equivalent to that of the entire atmosphere; therefore, ocean heat content dominates Earth’s energy storage. For this reason and because of the AMOC’s typically slow decadal variations, the AMOC regulates North Atlantic climate and contributes to the relatively mild climate of Europe. Hence, predicting AMOC variations is crucial for predicting climate variations in regions bordering the North Atlantic. Similar to weather predictions, climate predictions are based on numerical simulations of the climate system. However, providing accurate predictions on such long timescales is far from straightforward. Even in a perfect model approach, where biases between numerical models and reality are ignored, the chaotic nature of AMOC variability (i.e., high sensitivity to initial conditions) is a significant source of uncertainty, limiting its accurate prediction. Predictability studies focus on factors determining our ability to predict the AMOC rather than actual predictions. To this end, processes affecting AMOC predictability can be separated into two categories: processes acting as a source of predictability (periodic harmonic oscillations, for instance) and processes acting as a source of uncertainty (small errors that grow and significantly modify the outcome of numerical simulations). To understand the former category, harmonic modes of variability or precursors of AMOC variations are identified. On the other hand, in a perfect model approach, the sources of uncertainty are characterized by the spread of numerical simulations differentiated by the application of small differences to their initial conditions. Two alternative and complementary frameworks have arisen to investigate this spread. The pragmatic framework corresponds to performing an ensemble of simulations, by imposing a randomly chosen small error on the initial conditions of individual simulations. This allows a probabilistic approach and to statistically characterize the importance of the initial condition by evaluating the spread of the ensemble. The theoretical framework uses stability analysis to identify small perturbations to the initial conditions, which are conducive to significant disruption of the AMOC. Beyond these difficulties in assessing the predictability, decadal prediction systems have been developed and tested through a range of hindcasts. The inherent difficulties of operational forecasts span from developing efficient initialization methods to setting accurate radiative forcing to correcting for model drift and bias, all these improvements being estimated and validated through a range of specifically designed skill metrics.

Article

Rasmus Benestad

What are the local consequences of a global climate change? This question is important for proper handling of risks associated with weather and climate. It also tacitly assumes that there is a systematic link between conditions taking place on a global scale and local effects. It is the utilization of the dependency of local climate on the global picture that is the backbone of downscaling; however, it is perhaps easiest to explain the concept of downscaling in climate research if we start asking why it is necessary. Global climate models are our best tools for computing future temperature, wind, and precipitation (or other climatological variables), but their limitations do not let them calculate local details for these quantities. It is simply not adequate to interpolate from model results. However, the models are able to predict large-scale features, such as circulation patterns, El Niño Southern Oscillation (ENSO), and the global mean temperature. The local temperature and precipitation are nevertheless related to conditions taking place over a larger surrounding region as well as local geographical features (also true, in general, for variables connected to weather/climate). This, of course, also applies to other weather elements. Downscaling makes use of systematic dependencies between local conditions and large-scale ambient phenomena in addition to including information about the effect of the local geography on the local climate. The application of downscaling can involve several different approaches. This article will discuss various downscaling strategies and methods and will elaborate on their rationale, assumptions, strengths, and weaknesses. One important issue is the presence of spontaneous natural year-to-year variations that are not necessarily directly related to the global state, but are internally generated and superimposed on the long-term climate change. These variations typically involve phenomena such as ENSO, the North Atlantic Oscillation (NAO), and the Southeast Asian monsoon, which are nonlinear and non-deterministic. We cannot predict the exact evolution of non-deterministic natural variations beyond a short time horizon. It is possible nevertheless to estimate probabilities for their future state based, for instance, on projections with models run many times with slightly different set-up, and thereby to get some information about the likelihood of future outcomes. When it comes to downscaling and predicting regional and local climate, it is important to use many global climate model predictions. Another important point is to apply proper validation to make sure the models give skillful predictions. For some downscaling approaches such as regional climate models, there usually is a need for bias adjustment due to model imperfections. This means the downscaling doesn’t get the right answer for the right reason. Some of the explanations for the presence of biases in the results may be different parameterization schemes in the driving global and the nested regional models. A final underlying question is: What can we learn from downscaling? The context for the analysis is important, as downscaling is often used to find answers to some (implicit) question and can be a means of extracting most of the relevant information concerning the local climate. It is also important to include discussions about uncertainty, model skill or shortcomings, model validation, and skill scores.

Article

Russ S. Schumacher

Heavy precipitation, which in many contexts is welcomed because it provides the water necessary for agriculture and human use, in other situations is responsible for deadly and destructive flash flooding. Over the 30-year period from 1986 to 2015, floods were responsible for more fatalities in the United States than any other convective weather hazard (www.nws.noaa.gov/om/hazstats.shtml), and similar findings are true in other regions of the world. Although scientific understanding of the processes responsible for heavy rainfall continues to advance, there are still many challenges associated with predicting where, when, and how much precipitation will occur. Common ingredients are required for heavy rainfall to occur, but there are vastly different ways in which the atmosphere brings the ingredients together in different parts of the world. Heavy precipitation often occurs on very small spatial scales in association with deep convection (thunderstorms), factors that limit the ability of numerical models to represent or predict the location and intensity of rainfall. Furthermore, because flash floods are dependent not only on precipitation but also on the characteristics of the underlying land surface, there are fundamental difficulties in accurately representing these coupled processes. Areas of active current research on heavy rainfall and flash flooding include investigating the storm-scale atmospheric processes that promote extreme precipitation, analyzing the reasons that some rainfall predictions are very accurate while others fail, improving the understanding and prediction of the flooding response to heavy precipitation, and determining how heavy rainfall and floods have changed and may continue to change in a changing climate.

Article

Susan J. Lambert

This entry traces the development of both theory and empirical knowledge on the relationship between work and mental and physical health. Intrinsic job characteristics continue to shape the extent to which workers find meaning in what they do, and theories of stress and social roles continue to guide research. The field now includes investigations of how work affects personal life and theories that recognize the beneficial health effects of well-designed jobs. Social workers are advised that lower-level jobs come up short on all the positive qualities of employment covered in this entry, placing their workers' mental and physical health at risk.