1-8 of 8 Results

  • Keywords: dynamics x
Clear all

Article

The Atmosphere of Uranus  

Leigh N. Fletcher

Uranus provides a unique laboratory to test current understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere punctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus’s extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and the formation of stabilizing layers that may decouple different circulation and convective regimes as a function of depth. Phase transitions in the watery depths may also decouple Uranus’s atmosphere from motions within the interior. Weak vertical mixing and low atmospheric temperatures associated with Uranus’s negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus—the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing, and future in situ measurements—providing key insights into its formation and subsequent migration. As a cold, hydrogen-dominated, intermediate-sized, slowly rotating, and chemically enriched world, Uranus could be the closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own solar system. Future missions to the Uranian system must carry a suite of instrumentation capable of advancing knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic “ice giant.”

Article

Cluster Evolution  

Nydia MacGregor and Tammy L. Madsen

A substantial volume of research in economic geography, organization theory, and strategy examines the geographic concentration of interconnected firms, industries, and institutions. Theoretical and empirical work has named a host of agglomeration advantages (and disadvantages) with much agreement on the significance of clusters for firms, innovation, and regional growth. The core assertion of this vein of research is that geographically concentrated factors of production create self-reinforcing benefits, yielding increasing returns over time. The types of externalities (or agglomeration economies) generally fall into four categories: specialized labor or inputs, knowledge spillovers, diversity of actors and activity, and localized competition. Arising from multiple sources, each of these externalities attracts new and established firms and skilled workers. Along with recent advancements in evolution economics, newer research embraces the idea that the agglomeration mechanisms that benefit clusters may evolve over time. While some have considered industry and cluster life-cycle approaches, the complex adaptive systems (CAS) theory provides a well-founded framework for developing a theory of cluster evolution for several reasons. In particular, the content and stages of complex adaptive systems directly connect with those of a cluster, comprising its multiple, evolving dimensions and their interplay over time. Importantly, this view emphasizes that the externalities associated with agglomeration may not have stable effects, and thus, what fosters advantage in a cluster will change as the cluster evolves. Furthermore, by including a cluster’s degree of resilience and ability for renewal, the CAS lens addresses two significant attributes absent from cyclical approaches. Related research in various disciplines may further contribute to our understanding of cluster evolution. Studies of regional resilience (usually focused on a specific spatial unit rather than its industrial sectors) may correspond to the reorganization phase associated with clusters viewed as complex adaptive systems. In a similar vein, examining the shifting temporal dynamics and development trajectories resulting from discontinuous shocks may explain a cluster’s emergence and ultimate long-term renewal. Finally, the strain of research examining the relationship between policy initiatives and cluster development remains sparse. To offer the greatest theoretical and empirical traction, future research should examine policy outcomes aligned with specific stages of cluster evolution and include the relevant levels and scope of analysis. In sum, there is ample opportunity to further explore the complexities and interactions among firms, industries, networks, and institutions evident across the whole of a cluster’s evolution.

Article

Challenges for Natural Hazard and Risk Management in Mountain Regions of Europe  

Margreth Keiler and Sven Fuchs

European mountain regions are diverse, from gently rolling hills to high mountain areas, and from low populated rural areas to urban regions or from communities dependent on agricultural productions to hubs of tourist industry. Communities in European mountain regions are threatened by different hazard types: for example floods, landslides, or glacial hazards, mostly in a multi-hazard environment. Due to climate change and socioeconomic developments they are challenged by emerging and spatially as well as temporally highly dynamic risks. Consequently, over decades societies in European mountain ranges developed different hazard and risk management strategies on a national to local level, which are presented below focusing on the European Alps. Until the late 19th century, the paradigm of hazard protection was related to engineering measures, mostly implemented in the catchments, and new authorities responsible for mitigation were founded. From the 19th century, more integrative strategies became prominent, becoming manifest in the 1960s with land-use management strategies targeted at a separation of hazardous areas and areas used for settlement and economic purpose. In research and in the application, the concept of hazard mitigation was step by step replaced by the concept of risk. The concept of risk includes three components (or drivers), apart from hazard analysis also the assessment and evaluation of exposure and vulnerability; thus, it addresses in the management of risk reduction all three components. These three drivers are all dynamic, while the concept of risk itself is thus far a static approach. The dynamic of risk drivers is a result of both climate change and socioeconomic change, leading through different combinations either to an increase or a decrease in risk. Consequently, natural hazard and risk management, defined since the 21st century using the complexity paradigm, should acknowledge such dynamics. Moreover, researchers from different disciplines as well as practitioners have to meet the challenges of sustainable development in the European mountains. Thus, they should consider the effects of dynamics in risk drivers (e.g., increasing exposure, increasing vulnerability, changes in magnitude, and frequency of hazard events), and possible effects on development areas. These challenges, furthermore, can be better met in the future by concepts of risk governance, including but not limited to improved land management strategies and adaptive risk management.

Article

Tidal Interactions Between Planets and Host Stars  

Gordon Ogilvie

Hundreds of planets are already known to have orbits only a few times wider than the stars that host them. The tidal interaction between a planet and its host star is one of the main agents shaping the observed distributions of properties of these systems. Tidal dissipation in the planet tends make the orbit circular, as well as synchronizing and aligning the planet’s spin with the orbit, and can significantly heat the planet, potentially affecting its size and structure. Dissipation in the star typically leads to inward orbital migration of the planet, accelerating the star’s rotation, and in some cases destroying the planet. Some essential features of tidal evolution can be understood from the basic principles that angular momentum and energy are exchanged between spin and orbit by means of a gravitational field and that energy is dissipated. For example, most short-period exoplanetary systems have too little angular momentum to reach a tidal equilibrium state. Theoretical studies aim to explain tidal dissipation quantitatively by solving the equations of fluid and solid mechanics in stars and planets undergoing periodic tidal forcing. The equilibrium tide is a nearly hydrostatic bulge that is carried around the body by a large-scale flow, which can be damped by convection or hydrodynamic instability, or by viscoelastic dissipation in solid regions of planets. The dynamical tide is an additional component that generally takes the form of internal waves restored by Coriolis and buoyancy forces in a rotating and stratified fluid body. It can lead to significant dissipation if the waves are amplified by resonance, are efficiently damped when they attain a very short wavelength, or break because they exceed a critical amplitude. Thermal tides are excited in a planetary atmosphere by the variable heating by the star’s radiation. They can oppose gravitational tides and prevent tidal locking, with consequences for the climate and habitability of the planet. Ongoing observations of transiting exoplanets provide information on the orbital periods and eccentricities as well as the obliquity (spin–orbit misalignment) of the star and the size of the planet. These data reveal several tidal processes at work and provide constraints on the efficiency of tidal dissipation in a variety of stars and planets.

Article

Leech Behavioral Choice  

William B. Kristan Jr.

New techniques for recording the activity of many neurons simultaneously have given insights into how neuronal circuits make the decision to perform one of many possible behaviors. A long-standing hypothesis for how behavioral choices are made in any animal is that “command neurons” are responsible for selecting individual behaviors, and that these same neurons inhibit the command neurons that elicit other behaviors. In fact, this mechanism has turned out to be just one of several ways that such decision-making is accomplished. In particular, for some behavioral choices, the circuits appear to overlap, sometimes extensively, to perform two or more behaviors. Making decisions using such “multifunctional neurons” has been proposed for large neural networks, but this strategy appears to be used in relatively small nervous systems, too. These simpler nervous systems can serve as useful test systems to test hypotheses about how the dynamics of networks of neurons can be used to select among different behaviors, similar to the mechanisms used by leeches deciding to swim, shorten, crawl, or feed.

Article

Dynamics of the Indian Summer Monsoon Climate  

B.N. Goswami and Soumi Chakravorty

Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales. The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient. The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.

Article

The Indian Ocean Dipole  

Saji N. Hameed

Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.

Article

The Formation and Evolution of the Solar System  

Mikhail Marov

The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula’s inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.