1-2 of 2 Results

  • Keywords: extreme weather events x
Clear all

Article

The History and Science of Hurricanes in the Greater Caribbean  

Sherry Johnson

The Caribbean’s most emblematic weather symbol is the hurricane, a large rotating storm that can bring destructive winds, coastal and inland flooding, and torrential rain. A hurricane begins as a tropical depression, an area of low atmospheric pressure that produces clouds and thunderstorms. Hurricane season in the Caribbean runs from June 1 through November 30, although there have been infrequent storms that formed outside these dates. Hurricanes are classified according to their maximum wind speed, and when a tropical system reaches the wind speed of a tropical storm (35 mph), it is given a name. Lists of names, which are rotated periodically, are specific to certain regions. If a named storm is responsible for causing a significant number of deaths or property damage, the name is retired and replaced with another. Most deaths in a storm came from drowning, from storm surge along the coast or from flooding or mudslides in the interior. Storm-related deaths also occur when structures collapse or when victims are struck by flying debris. One important and underestimated cause of death after the passage of a storm is disease. Even if the destruction is not immediate, the passage of a hurricane can leave significant ecological damage along the coast and in the interior. Hurricanes can have a devastating effect on a community that takes a direct hit. Repeated hurricane strikes can leave a sense of helplessness and hopelessness, “hurricane fatigue.” Conversely, survivors of a disaster are often left with a feeling of confidence that, since they have endured the effects of at least one deadly hurricane, they can do so again. Until the last half of the 18th century, meteorology remained primitive, but the Age of Enlightenment brought scientific and ideological advances. Major beneficiaries were royal navies whose navigation manuals and nautical charts became increasingly more accurate. In 1821, William C. Redfield established the circular nature of storms and their counterclockwise rotation, while other scientists showed how wind currents within the storms moved upward. Once the coiled structure of hurricanes were established by mid-century, the term “cyclone” was applied, based upon the Greek word for the coils of a snake. After the mid-19th century, scientists moved from information gathering to attempts to predict hurricane strikes. Technology, in the form of the telegraph, was a key component in creating a forecasting system aided by organizations such as the Colegio de Belén, in Havana, Cuba. Later in the century, governments worldwide created official observation networks in which weather reports were radiotelegraphed from ships at sea to stations on land. The 20th century experienced advances, such as the use of kites and balloons, and the introduction of weather reconnaissance aircraft during World War II. In April 1960, the first satellite was launched to observe weather patterns, and by the early 1980s, ocean buoys and sophisticated radar systems made forecasts increasingly more accurate.

Article

Health Problems in the European Alps Under Climate Change  

Lisbeth Weitensfelder, Hans-Peter Hutter, Kathrin Lemmerer, Michael Poteser, Peter Wallner, and Hanns Moshammer

The Alpine region in Central Europe and its populations in principle face the same types of threats to their health due to climate change as those in other parts of the world. But special geographical and climatic aspects of that region warrant closer and special examination of the connections between health and climate change in the Alps. These include small-scale variation, in some instances steep mountain slopes, and, above all, a larger-than-average increase in near-surface temperatures. To that end, there are main pathways between climate change and health: “Direct effects” describe rather short-term health effects of extreme weather events. Such events have occurred in the past, and therefore ample epidemiological evidence is available for the assessment of their impact. With climate change, such extreme events are predicted to change in frequency and intensity. “Indirect effects” refer to a more complex pathway where long-term changes of various natural and anthropogenic systems in reaction or adaptation to climate change exert adverse or sometimes also beneficial impacts on health. Such systems include ecosystems in which, for example, the prevalence of disease vectors or the allergenicity of pollen will change. But agriculture and forestry or the built environment are also affected by climate change and in turn affect the health of people. “Distant effects” are also rather indirect in nature. But in this pathway, changes due to climate change in other parts of the world affect the health in the Alpine region. Increasing migration into the Alpine region and changing migration patterns are important examples of this pathway. In some instances, most importantly regarding mental health, there is still a need for more studies focusing on the Alpine environments. But apart from these especially understudied topics, as the climate crisis evolves, there is generally a need for continuous research on the health effects of climate change and the potential of health promotion to create co-benefits.