1-10 of 10 Results  for:

  • Keywords: hazard x
Clear all

Article

Natural Hazards Governance in South Asia  

Mihir Bhatt, Ronak B. Patel, and Kelsey Gleason

South Asia is faced with a range of natural hazards, including floods, droughts, cyclones, earthquakes, landslides, and tsunamis. Rapid and unplanned urbanization, environmental degradation, climate change, and socioeconomic conditions are increasing citizens’ exposure to and risk from natural hazards and resulting in more frequent, intense, and costly disasters. Although governments and the international community are investing in disaster risk reduction, natural hazard governance in South Asian countries remain weak and often warrants a review when a major natural disaster strikes. Natural hazards governance is an emerging concept, and many countries in South Asia have a challenging hazard governance context.

Article

Assessment and Adaptation to Climate Change-Related Flood Risks  

Brenden Jongman, Hessel C. Winsemius, Stuart A. Fraser, Sanne Muis, and Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.

Article

Natural Hazards Governance in Zimbabwe  

Thabo Ndlovu

The frequency and complexity of hazard occurrences in rural and urban Zimbabwe has made the governance discourse fashionable in efforts to mitigate the devastating effects in contemporary settings. So common is the reactive attitude at national and subnational levels that hazard governance has been made inescapable in aligning with the notion that “an ounce of prevention is worth a pound of cure” through design and implementation of context specific interventions. The 1992 drought is one unforgettable occurrence which triggered a plethora of actions such as dam construction, irrigation development, and the establishment of agricultural banks to support recovery initiatives in Zimbabwe. Strides to embrace the role of science and technology are evident through the establishment of research and academic institutions to anchor disaster risk management. Despite these efforts, vulnerable groups, government institutions, NGOs, and donors have invested less than in the predisaster phase.

Article

Natural Flood Risk Management  

Anna Murgatroyd and Simon Dadson

Flooding is a natural hazard with the potential to cause damage at the local, national, and global scale. Flooding is a natural product of heavy precipitation and increased runoff. It may also arise from elevated groundwater tables, coastal inundation, or failed drainage systems. Flooded areas can be identified as land beyond the channel network covered by water. Although flooding can cause significant damage to urban developments and infrastructure, it may be beneficial to the natural environment. Preemptive actions may be taken to protect communities at risk of inundation that are not able to relocate to an area not at risk of flooding. Adaptation measures include flood defenses, river channel modification, relocation, and active warning systems. Natural flood management (NFM) interventions are designed to restore, emulate, or enhance catchment processes. Such interventions are common in upper reaches of the river and in areas previously transformed by agriculture and urban development. Natural techniques can be categorized into three groups: water retention through management of infiltration and overland flow, managing channel connectivity and conveyance, and floodplain conveyance and storage. NFM may alter land use, improve land management, repair river channel morphology, enhance the riparian habitat, enrich floodplain vegetation, or alter land drainage. The range of natural flood management options allows a diverse range of flood hazards to be considered. As a consequence, there is an abundance of NFM case studies from contrasting environments around the globe, each addressing a particular set of flood risks. Much of the research supporting the use of NFM highlights both the benefits and costs of working with natural processes to reduce flood hazards in the landscape. However, there is a lack of quantitative evidence of the effectiveness of measures, both individually and in combination, especially at the largest scales and for extreme floods. Most evidence is based on modeling studies and observations often relate to a specific set of upstream measures that are challenging to apply elsewhere.

Article

Palaeotsunamis  

James Goff

How big, how often, and where from? This is almost a mantra for researchers trying to understand tsunami hazard and risk. What we do know is that events such as the 2004 Indian Ocean Tsunami (2004 IOT) caught scientists by surprise, largely because there was no “research memory” of past events for that region, and as such, there was no hazard awareness, no planning, no risk assessment, and no disaster risk reduction. Forewarned is forearmed, but to be in that position, we have to be able to understand the evidence left behind by past events—palaeootsunamis—and to have at least some inkling of what generated them. While the 2004 IOT was a devastating wake-up call for science, we need to bear in mind that palaeotsunami research was still in its infancy at the time. What we now see is still a comparatively new discipline that is practiced worldwide, but as the “new kid on the block,” there are still many unknowns. What we do know is that in many cases, there is clear evidence of multiple palaeotsunamis generated by a variety of source mechanisms. There is a suite of proxy data—a toolbox, if you will—that can be used to identify a palaeotsunami deposit in the sedimentary record. Things are never quite as simple as they sound, though, and there are strong divisions within the research community as to whether one can really differentiate between a palaeotsunami and a palaeostorm deposit, and whether proxies as such are the way to go. As the discipline matures, though, many of these issues are being resolved, and indeed we have now arrived at a point where we have the potential to detect “invisible deposits” laid down by palaeotsunamis once they have run out of sediment to lay down as they move inland. As such, we are on the brink of being able to better understand the full extent of inundation by past events, a valuable tool in gauging the magnitude of palaeotsunamis. Palaeotsunami research is multidisciplinary, and as such, it is a melting pot of different scientific perspectives, which leads to rapid innovations. Basically, whatever is associated with modern events may be reflected in prehistory. Also, palaeotsunamis are often part of a landscape response pushed beyond an environmental threshold from which it will never fully recover, but that leaves indelible markers for us to read. In some cases, we do not even need to find a palaeotsunami deposit to know that one happened.

Article

Natural Hazards Governance in Western Europe  

Florian Roth, Timothy Prior, and Marco Käser

Western Europe is an area dominated by established democratic governments, backed by strong economies, for the most part. Drawing on refined technical risk analyses, preventive measures, and comprehensive resources for emergency response, countries from Western Europe have managed to mitigate the most prevalent and recurring hazards. Over the centuries, European governments have been successful in reducing the death toll related to natural phenomena. This has been achieved by addressing all three dimensions of the risk triangle—hazards, exposure, and vulnerability. However, cultural and political differences result in subtle, but distinct differences in the context of natural hazard governance. While these differences can be considered a strength in dealing with local hazards under specific contexts, they can complicate effective and coordinated prevention, preparedness, and response measures toward large-scale hazards. This is especially the case with transboundary hazards, the regional response to which has strongly influenced hazard governance in Western Europe. Evolving risk circumstances have resulted in constant adaptations in hazard governance in the region, including local, national, and transboundary arrangements, and a more recent re-localization in the face of new complex threats that has fallen under the umbrella of resilience building.

Article

Natural Hazards Governance in Canada  

Jack Lindsay

The responsibility for hazard governance in Canada is indirectly determined by the division of subjects in the Constitution Act of 1867. This is because emergency management is not a distinct constitutional subject, and therefore it is a matter of assessing which subjects are most related to the practices of emergency management. As a result of this uncertainty both the provincial and federal governments have emergency management legislation. The various provincial legislation and the federal Emergencies Act of 1988 are primarily focused on providing for the use of extraordinary powers as part of crisis response. The federal Emergency Management Act 2008 does take a more comprehensive approach that includes hazard mitigation, but its reach only extends to federal departments. The governance tools most applicable to hazard management, such as land-use planning and zoning, are normally found within the Provinces’ planning or municipal legislation. The planning legislation empowers local authorities to manage development and its interaction with the natural environment. However, these powers are seldom directed towards hazard mitigation. If there is a reference to natural hazards in the planning legislation it is usually to specific risks, such as flooding or slope failure, that are spatially bounded risks to development. This separation of hazard governance in the legislation is reflected in local government practices. In most provinces emergency managers are not required by their respective legislation to incorporate hazard mitigation into community emergency programs. The planning legislation, however, seldom extends the community planner’s mandate for mitigation beyond the concerns for safe building sites and the separation of incompatible land uses. The responsibility to prevent human development from interacting with the extremes of the natural environment, or more succinctly “hazard governance,” is not clearly assigned in Canada.

Article

Hazards, Social Resilience, and Safer Futures  

Lena Dominelli

The concepts of hazards and risks began in engineering when scientists were measuring the points at which materials would become sufficiently stressed by the pressures upon them that they would break. These concepts migrated into the environmental sciences to assess risk in the natural terrain, including the risks that human activities posed to the survival of animals (including fish in streams) and plants in the biosphere. From there, they moved to the social sciences, primarily in formal disaster discourses. With the realization that modern societies constantly faced risks cushioned in uncertainties within everyday life, the media popularized the concept of risk and its accoutrements, including mitigation, adaptation, and preventative measures, among the general populace. A crucial manifestation of this is the media’s accounts of the risks affecting different groups of people or places contracting Covid-19, which burst upon a somnambulant world in December 2019 in Wuhan, China. The World Health Organization (WHO) declared Covid-19 a pandemic on March 11, 2020. Politicians of diverse hues sought to reassure nervous inhabitants that they had followed robust, scientific advice on risks to facilitate “flattening the curve” by spreading the rate of infection in different communities over a longer period to reduce demand for public health services. Definitions of hazard, risk, vulnerability, and resilience evolved as they moved from the physical sciences into everyday life to reassure edgy populations that their social systems, especially the medical ones, could cope with the demands of disasters. While most countries have managed the risk Covid-19 posed to health services, this has been at a price that people found difficult to accept. Instead, as they reflected upon their experiences of being confronted with the deaths of many loved ones, especially among elders in care homes; adversities foisted upon the disease’s outcomes by existing social inequalities; and loss of associative freedoms, many questioned whether official mitigation strategies were commensurate with apparent risks. The public demanded an end to such inequities and questioned the bases on which politicians made their decisions. They also began to search for certainties in the social responses to risk in the hopes of building better futures as other institutions, schools, and businesses went into lockdown, and social relationships and people’s usual interactions with others ceased. For some, it seemed as if society were crumbling around them, and they wanted a better version of their world to replace the one devastated by Covid-19 (or other disasters). Key to this better version was a safer, fairer, more equitable and reliable future. Responses to the risks within Covid-19 scenarios are similar to responses to other disasters, including earthquakes, volcanic eruptions, wildfires, tsunamis, storms, extreme weather events, and climate change. The claims of “building back better” are examined through a resilience lens to determine whether such demands are realizable, and if not, what hinders their realization. Understanding such issues will facilitate identification of an agenda for future research into mitigation, adaptation, and preventative measures necessary to protect people and the planet Earth from the harm of subsequent disasters.

Article

Occupational Health Challenges for Immigrant Workers  

Emily Q. Ahonen

Occupational health and safety concerns classically encompass conditions and hazards in workplaces which, with sufficient exposure, can lead to injury, distress, illness, or death. The ways in which work is organized and the arrangements under which people are employed have also been linked to worker health. Migrants are people who cross borders away from their usual place of residence, and about one in seven people worldwide is a migrant. Terms like “immigrant” and “emigrant” refer to the direction of that movement relative to the stance of the speaker. Any person who might be classified as a migrant and who works or seeks to work is an immigrant worker and may face challenges to safety, health, and well-being related to the work he or she does. The economic, legal, and social circumstances of migrant workers can place them into employment and working conditions that endanger their safety, health, or well-being. While action in support of migrant worker health must be based on systematic understanding of these individuals’ needs, full understanding the possible dangers to migrant worker health is limited by conceptual and practical challenges to public health surveillance and research about migrant workers. Furthermore, intervention in support of migrant worker health must balance tensions between high-risk and population-based approaches and need to address the broader, structural circumstances that pattern the health-related experiences of migrant workers. Considering the relationships between work and health that include but go beyond workplace hazards and occupational injury, and engaging with the ways in which structural influences act on health through work, are complex endeavors. Without more critically engaging with these issues, however, there is a risk of undermining the effectiveness of efforts to improve the lot of migrant workers by “othering” the workers or by failing to focus on what is causing the occupational safety and health concern in the first place—the characteristics of the work people do. Action in support of migrant workers should therefore aim to ameliorate structural factors that place migrants into disadvantageous conditions while working to improve conditions for all workers.

Article

Wildfire Communication and Climate Risk Mitigation  

Robyn S. Wilson, Sarah M. McCaffrey, and Eric Toman

Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well as contributing to larger and more damaging wildfires over time. Although federal fire policy has changed to allow fire to be used as a management tool on the landscape, this change has been slow to take place, while the number of people living in high-risk wildland–urban interface communities continues to increase. Under a variety of climate scenarios, in particular for states in the western United States, it is expected that the frequency and severity of fires will continue to increase, posing even greater risks to local communities and regional economies. Resource managers and public safety officials are increasingly aware of the need for strategic communication to both encourage appropriate risk mitigation behavior at the household level, as well as build continued public support for the use of fire as a management tool aimed at reducing future wildfire risk. Household decision making encompasses both proactively engaging in risk mitigation activities on private property, as well as taking appropriate action during a wildfire event to protect personal safety. Very little research has directly explored the connection between climate-related beliefs, wildfire risk perception, and action; however, the limited existing research suggests that climate-related beliefs have little direct effect on wildfire-related action. Instead, action appears to depend on understanding the benefits of different mitigation actions and in engaging the public in interactive, participatory communication programs that build trust between the public and natural resource managers. A relatively new line of research focuses on resource managers as critical decision makers in the risk management process, pointing to the need to thoughtfully engage audiences other than the lay public to improve risk management. Ultimately, improving the decision making of both the public and managers charged with mitigating the risks associated with wildfire can be achieved by carefully addressing several common themes from the literature. These themes are to (1) promote increased efficacy through interactive learning, (2) build trust and capacity through social interaction, (3) account for behavioral constraints and barriers to action, and (4) facilitate thoughtful consideration of risk-benefit tradeoffs. Careful attention to these challenges will improve the likelihood of successfully managing the increasing risks that wildfire poses to the public and ecosystems alike in a changing climate.