1-4 of 4 Results  for:

  • Keywords: human impact x
Clear all


changing landscapes, human impact on  

John Bintliff

The Classical world witnessed many forms of physical landscape change due to long-term and short-term geological and climatological processes. There have also been alterations to the land surface resulting from an interaction between human impact and these natural factors. Cyclical changes in land use, agricultural technology, economy, and politics have continually transformed the rural landscapes of the Mediterranean and the wider Classical world and their mapping, in turn, can shed light on fundamental aspects of ancient society that are not always documented in Classical texts.

As with natural causes of landscape change (see changing landscapes, natural causes of), a useful approach is offered by the chronological framework developed by French historian Fernand Braudel, who envisaged the Mediterranean past as created through the interaction of dynamic forces operating in parallel but on different wavelengths of time: the long term (up to as much as thousands or millions of years, not at all in the awareness of past human agents); the medium term (centuries or more, not clearly cognisant to contemporaries); and the short term (observable within a human lifetime or less).


Agroforestry and Its Impact in Southeast Asia  

Christopher Hunt

Research during the late 20th and early 21st centuries found that traces of human intervention in vegetation in Southeast Asian and Australasian forests started extremely early, quite probably close to the first colonization of the region by modern people around or before 50,000 years ago. It also identified what may be insubstantial evidence for the translocation of economically important plants during the latest Pleistocene and Early Holocene. These activities may reflect early experiments with plants which evolved into agroforestry. Early in the Holocene, land management/food procurement systems, in which trees were a very significant component, seem to have developed over very extensive areas, often underpinned by dispersal of starchy plants, some of which seem to show domesticated morphologies, although the evidence for this is still relatively insubstantial. These land management/food procurement systems might be regarded as a sort of precursor to agroforestry. Similar systems were reported historically during early Western contact, and some agroforest systems survive to this day, although they are threatened in many places by expansion of other types of land use. The wide range of recorded agroforestry makes categorizing impacts problematical, but widespread disruption of vegetational succession across the region during the Holocene can perhaps be ascribed to agroforestry or similar land-management systems, and in more recent times impacts on biodiversity and geomorphological systems can be distinguished. Impacts of these early interventions in forests seem to have been variable and locally contingent, but what seem to have been agroforestry systems have persisted for millennia, suggesting that some may offer long-term sustainability.



Rebecca Futo Kennedy and Katherine Blouin

Natural environments such as the air currents, temperatures, waters, and topography were thought to shape humans, animals, and plants. For humans, the impact was physical, behavioural, and cultural. For animals, the impacts were mostly physical (e.g., oxen in Scythia have no horns because of the cold). This is typically referred to as environmental or climatic determinism. Early explicit examples of this idea include the HippocraticAirs, Waters, Places and occasional comments in Herodotus, but arguments for such a relationship between identity and environment as early as Homer’s Odyssey and Hesiod have been made.1 There is a long-standing tradition beginning with Homer and extending through the Roman imperial period of humans, animals, and their hybrids being associated with geographic distance from an imagined centre, dwelling in designated climate bands, or being earth-born or autochthonous (gēgenēs, autochthōn) that may reflect early forms of environmental determinism. The ideas continue to circulate in much the same form as found in the Hippocratic Airs in Roman authors such as Vitruvius, Manilius, Pliny the Elder, and Vegetius.


Climate Change Impacts on Cities in the Baltic Sea Region  

Sonja Deppisch

While not all projected climate change impacts are affecting especially and directly at all the cities of the Baltic Sea region (bsr), including its basin, those cities expect very different direct as well as indirect impacts of climate change. The impacts are also a matter of location, if the city with its built structures and concentration of population is located in the northern or southern part of this basin, or more inland or directly at the coast. As there are many different definitions in use trying to determine what a city is, also in the different national contexts of the bsr, here it is cities in the sense of being human-dominated densely populated areas, which are also characterized by higher concentrations of built-up areas, infrastructure, and soil-sealing as well as socioeconomic roles than rural settlements are. Those characteristics render cities also especially vulnerable to climate change impacts while there are some opportunities arising too. There are many studies on climate change impacts on the Baltic Sea itself as well as on the various ecosystems, but the studies on the observed as well as potential future impacts of climate change on cities are disperse, many are also of a national character or concentrating on a small number of cases, leaving some cities not well studied at all. This renders an all-encompassing picture on the cities within the bsr difficult and even more complicated as every city provides a mix of built-up and open structures, of socioeconomic structure and role in a region, nation-state, or even on an international level, and further characteristics. Their urban development is dependent on manifold various interdependencies as well as climatic and nonclimatic drivers, such as, to name just a few diverse examples, urban to international governance processes, or topography and location, or also different socioeconomic vulnerabilities within the Baltic Sea basin. Accordingly every urban society and structure provides specific exposure, vulnerabilities, and adaptive capacity. Generally, the cities of the bsr have to deal with the impacts of temperature rise, natural hazards, and extreme events, and, depending on location and topography, with sea-level rise. With reference to temperature rise and the increase of heat waves, it is important to consider that cities of a certain size within the Baltic Sea basin contribute to their own urban climatic conditions and provide already urban heat islands. Also, urban planning and building facilitated by local political decisions contribute to the extent of urban floods as well as their damage, as these are regulating, for example, the sealing of soils or new built-up areas in flood-prone zones.