1-15 of 15 Results  for:

  • Keywords: science communication x
Clear all

Article

Entertainment Film and TV Portrayals of Climate Change and Their Societal Impacts  

Anthony Dudo, Jacob Copple, and Lucy Atkinson

Although there is an abundance of social scientific research focused on public opinion and climate change, there remains much to learn about how individuals come to understand, feel, and behave relative to this issue. Efforts to understand these processes are commonly directed toward media depictions, because media represent a primary conduit through which people encounter information about climate change. The majority of research in this area has focused on news media portrayals of climate change. News media depictions, however, represent only a part of the media landscape, and a relatively small but growing body of work has focused on examining portrayals of climate change in entertainment media (i.e., films, television programs, etc.) and their implications. This article provides a comprehensive overview of this area of research, summarizing what is currently known about portrayals of climate change in entertainment media, the individual-level effects of these portrayals, and areas ripe for future research. Our overview suggests that the extant work has centered primarily on a small subset of high-profile climate change films. Examination of the content of these films has been mostly rhetorical and has often presumed negative audience effects. Studies that specifically set out to explore possible effects have often unearthed evidence suggesting short-term contributions to viewers’ perceptions of climate change, specifically in terms of heightened awareness, concern, and motivation. Improving the breadth and depth of research in this area, we contend, can stem from more robust theorizing, analyses that focus on a more diverse menu of entertainment media and the interactions among them, and increasingly complex analytical efforts to capture long-term effects.

Article

The Knowledge Deficit Model and Science Communication  

W.J. Grant

The Knowledge Deficit Model represents a key boundary concept in the modern discussion of science communication. In essence, the model asserts an epistemic priority for science and scientific information: that scientific knowledge should be paramount in making decisions on science-related issues, that this knowledge should be communicated from scientists to audiences who do not have this knowledge, that scientists should be in control of this communication flow, that the nonscientific audiences receiving this knowledge will be grateful for this, and that they will make better decisions as a result. To state it simply, the model assumes that nonscientific audiences are in some senses empty vessels suffering from a deficit of scientific knowledge, waiting to be filled with the wisdom of science. Among science communication researchers and those concerned with the relationship between science and society, this model of communication is often considered essentially flawed, in that it affords politically problematic privileges to scientific knowledge and leaves scientists ignorant of the needs and knowledges their audiences, ignorant of the contexts in which decisions will be made, less likely to be viewed as trustworthy by those audiences, and less likely to do good science. The end result of such an approach is only likely to be a greater distrust between science and society, and flawed science. Yet despite these critiques—and a near total absence of evidence in its favor—the model perseveres. Many scientists and science organizations continue to communicate their work in a deficit model style. Understanding why it persists—and what to do about it—remains a key challenge in science communication research.

Article

The Information Deficit Model and Climate Change Communication  

Brianne Suldovsky

Many publics remain divided about the existence and consequences of anthropogenic climate change despite scientific consensus. A popular approach to climate change communication, and science communication more generally, is the information deficit model. The deficit model assumes that gaps between scientists and the public are a result of a lack of information or knowledge. As a remedy for this gap, the deficit model is a one-way communication model where information flows from experts to publics in an effort to change individuals’ attitudes, beliefs, or behaviors. Approaches to climate change communication that reflect the deficit model include websites, social media, mobile applications, news media, documentaries and films, books, and scientific publications and technical reports. The deficit model has been highly criticized for being overly simplistic and inaccurately characterizing the relationship between knowledge, attitudes, beliefs, and behaviors, particularly for politically polarized issues like climate change. Even so, it continues to be an integral part of climate change communication research and practice. In an effort to address the inadequacies of the deficit model, scholars and practitioners often utilize alternative forms of public engagement, including the contextual model, the public engagement model, and the lay expertise model. Each approach to public engagement carries with it a unique set of opportunities and challenges. Future work in climate change communication should explore when and how to most effectively use the models of public engagement that are available.

Article

Scientific Uncertainty in Health and Risk Messaging  

Stephen Zehr

Expressions of scientific uncertainty are normal features of scientific articles and professional presentations. Journal articles typically include research questions at the beginning, probabilistic accounts of findings in the middle, and new research questions at the end. These uncertainty claims are used to construct clear boundaries between uncertain and certain scientific knowledge. Interesting questions emerge, however, when scientific uncertainty is communicated in occasions for public science (e.g., newspaper accounts of science, scientific expertise in political deliberations, science in stakeholder claims directed to the public, and so forth). Scientific uncertainty is especially important in the communication of environmental and health risks where public action is expected despite uncertain knowledge. Public science contexts are made more complex by the presence of multiple actors such as citizen-scientists, journalists, stakeholders, social movement actors, politicians, and so on who perform important functions in the communication and interpretation of scientific information and bring in diverse norms and values. A past assumption among researchers was that scientists would deemphasize or ignore uncertainties in these situations to better match their claims with a public perception of science as an objective, truth-building institution. However, more recent research indicates variability in the likelihood that scientists communicate uncertainties and in the public reception and use of uncertainty claims. Many scientists still believe that scientific uncertainty will be misunderstood by the public and misused by interest groups involved with an issue, while others recognize a need to clearly translate what is known and not known. Much social science analysis of scientific uncertainty in public science views it as a socially constructed phenomenon, where it depends less upon a particular state of scientific research (what scientists are certain and uncertain of) and more upon contextual factors, the actors involved, and the meanings attached to scientific claims. Scientific uncertainty is often emergent in public science, both in the sense that the boundary between what is certain and uncertain can be managed and manipulated by powerful actors and in the sense that as scientific knowledge confronts diverse public norms, values, local knowledges, and interests new areas of uncertainty emerge. Scientific uncertainty may emerge as a consequence of social conflict rather than being its cause. In public science scientific uncertainty can be interpreted as a normal state of affairs and, in the long run, may not be that detrimental to solving societal problems if it opens up new avenues and pathways for thinking about solutions. Of course, the presence of scientific uncertainty can also be used to legitimate inaction.

Article

Psychological, Social, and Cultural Barriers to Public Engagement With Climate Change  

Nathaniel Geiger, Brianna Middlewood, and Janet Swim

Given the severity of the threat posed by climate change, why is large-scale public engagement with the topic not more widespread? The following are categories of barriers to accurate risk perceptions and action. First, many - especially in the Global North - underestimate of the threat posed by climate change. Second, many lack knowledge and perceive they do not have the ability contribute to addressing the threat. Third, there exist social barriers that discourage climate change engagement such as anti-climate action social norms. Finally, some common types of worldviews, such as market fundamentalism, can conflict with climate change engagement.

Article

Psychological Challenges in Communicating about Climate Change and Its Uncertainites  

Emily H. Ho, David V. Budescu, and Han Hui Por

The overwhelming majority of the scientific community agrees that climate change (CC) is occurring and is caused by anthropogenic, or human-caused, forcing. The global populace is aware of this phenomenon but appears to be unconcerned about CC and is slow to adopt potential mitigative actions. CC is a unique and complex phenomenon affected by various kinds of uncertainty, rendering communicative efforts particularly challenging. The compound and, potentially, conflicting uncertainties inherent in CC engender public ambivalence about the issue. The treatment of uncertainty in the Intergovernmental Panel on Climate Change’s (IPCC’s) reports have been shown to be confusing to policymakers and the general public, further confounding public outreach efforts. Given diverse communication styles and the multifaceted nature of CC, an assortment of strategies has been recommended to maximize understanding and increase salience. In particular, using evidence-based approaches to communicate about probabilistic outcomes in CC increases communicative efficiency.

Article

Narrative Persuasion and Storytelling as Climate Communication Strategies  

Michael D. Jones and Holly Peterson

Despite scientific consensus about anthropogenic climate change and its potentially devastating effects on the earth, public perceptions remain resistant to some of the most important climate change science messages. Science communicators may help the public better understand, accept, and discuss climate change information by incorporating recent findings in narrative scholarship from the academic field of public policy. Narratives help people understand and communicate information by organizing information in a way that is conducive to human cognition. Through integrating research findings from the climate change science communication literature with those from the narrative policy framework’s (NPF) empirical climate change studies, five distinct suggestions for writing effective climate change stories emerge. For the NPF, policy narratives necessarily include characters and policy referents, but may also include plot, setting, policy solutions, as well as other yet-to-be identified components. The five suggestions for writing climate change stories are as follow. First, use narrative form and content when communicating climate change science. Second, identify audience characteristics and articulate the setting of the story (problem, cause, context) in specific, recent, and audience-relevant language. Third, using knowledge about audience beliefs and values, choose characters (heroes, villains, or victims) whom the audience can relate to and will care about. When casting characters, focus on relaying positive emotions associated with motivation and personal control instead of negative emotions associated with futility. Fourth, temporally link narrative components together with specific information about causality, risk, and human agency. Fifth, clearly identify the point of the story in terms of risks and benefits, emphasizing gains instead of losses, and referencing policy solutions with wide support if relevant. Employing such techniques may help correct suboptimal messaging structures that encourage cognitive resistance to scientific information, thereby facilitating information transmission to a larger segment of the population. Additionally, these techniques offer avenues for replicable research designs that may help to further advance the scientific understanding of climate change communication.

Article

Climate Change Communication in New Zealand  

Rhian Salmon, Rebecca Priestley, Michele Fontana, and Taciano L. Milfont

Climate change communication in Aotearoa New Zealand occurs through multiple channels, including public communication by experts; formal and informal science-policy dialogues; and publication of popular books, documentaries, and media reports. There is, in addition, a wide array of climate change communication activities that are less well documented, such as those that utilize the education system, social media, art, community events and festivals, and co-production processes related to adaptation and mitigation choices. Although research into the communication of climate change is in its infancy in the country, data on public attitudes toward climate change over the past decade indicate that most New Zealanders believe climate change is occurring, is anthropogenic, and is a serious concern. This is mirrored by research into media coverage on climate change, which shows that mainstream news reports are largely consistent with the scientific consensus and reports issued by the Intergovernmental Panel on Climate Change (IPCC), and do not give much coverage to skeptical or catastrophic viewpoints.

Article

Public Impact of Planetary Science  

Linda Billings

The public impact of planetary science, or, alternatively, the public value of planetary science, is poorly understood, as little research has been published on the subject. Public impact may be linked to scientific impact, but it is not the same as public impact. Nor is it the same as public benefit or public understanding. No clear, agreed-upon definition of “public impact” exists, and certainly no definition of “the public impact of planetary science” exists. It is a matter of judgment as to whether global spending on planetary science has yielded positive public impacts, let alone impacts that are worth the investment. More research on the public impact of planetary science is needed. However, the study of public impact is a social scientific enterprise, and space agencies, space research institutes, and aerospace companies historically have invested very little in social scientific research. Without further study of the subject, the public impact of planetary science will remain poorly understood.

Article

Science and Communication  

Celeste M. Condit and L. Bruce Railsback

Whether understood as a set of procedures, statements, or institutions, the scope and character of science has changed through time and area of investigation. The prominent current definition of science as systematic efforts to understand the world on the basis of empirical evidence entails several characteristics, each of which has been deeply investigated by multidisciplinary scholars in science studies. The aptness of these characteristics as defining elements of science has been examined both in terms of their sufficiency as normative ideals and with regard to their fit as empirical descriptors of the actual practices of science. These putative characteristics include a set of commitments to (1) the goal of developing maximally general, empirically based explanations certified through falsification procedures, predictive power, and/or fruitfulness and application, (2) meta-methodologies of hypothesis testing and quantification, and (3) relational norms including communalism, universalism, disinterestedness, organized skepticism, and originality. The scope of scientific practice has been most frequently identified with experimentation, observation, and modeling. However, data mining has recently been added to the scientific repertoire, and genres of communication and argumentation have always been an unrecognized but necessary component of scientific practices. The institutional home of science has also changed through time. The dominant model of the past three centuries has housed science predominantly in universities. However, science is arguably moving toward a “post-academic” era.

Article

Communication Strategies of Environmental NGOs and Advocacy Groups  

Steven Yearley

Environmental organizations have been critically important in publicizing and supplying arguments about climate change, just as with the other environmental issues facing contemporary societies. In their campaigns and activism, environmental groups need to be able to make influential and widely circulated claims about the state of the natural world or the ecological impact of human activities. To do this, they have to “manage” their relationship to science. Environmentalists (in contrast to many other campaigners) are obliged to be science communicators because the convincingness of their message depends on the underlying presumption that their claims have a basis in factual, scientific accuracy. Facing the science and communication challenges of climate change, environmentalists have often found their role to be an unusual one. Unlike in most other ecological campaign areas, they have been committed to defending or bolstering mainstream scientific opinion about the nature and causes of climate change. Nonetheless, they have sought ways of distancing themselves from some of the policy and technological options apparently favored by leading scientific figures. And they have pioneered approaches based more on long-term investment strategies and normative values which, to some degree, allow them to sidestep difficulties associated with the adoption of a subordinate role in the science communication arena.

Article

Communicating About Climate Change with Journalists and Media Producers  

John Wihbey and Bud Ward

The relationship between scientific experts and news media producers around issues of climate change has been a complicated and often contentious one, as the slow-moving and complex story has frequently challenged, and clashed with, journalistic norms of newsworthiness, speed, and narrative compression. Even as climate scientists have become more concerned by their evidence-based findings involving projected risks, doubts and confusion over communications addressing those risks have increased. Scientists increasingly have been called upon to speak more clearly and forcefully to the public through news media about evidence and risks—and to do so in the face of rapidly changing news media norms that only complicate those communications. Professional science and environment journalists—whose ranks have been thinned steadily by media industry financial pressures—have meanwhile come under more scrutiny in terms of their understanding; accuracy; and, at times, perceived bias. A number of important organizations have recognized the need to educate and empower a broad range of scientists and journalists to be more effective at communicating about the complexities of climate science and about the societal and economic impacts of a warming climate. For example, organizations such as Climate Communication have been launched to support scientists in their dealings with media, while the United Nations Intergovernmental Panel on Climate Change itself has continued to focus on the communication of climate science. The Earth Journalism Network, Society of Environmental Journalists, Poynter Institute, and the International Center for Journalists have worked to build media capacity globally to cover climate change stories. Efforts at Stanford University, the University of Oxford, Massachusetts Institute of Technology, Harvard University, and the University of Rhode Island sponsor programming and fellowships that in part help bolster journalism in this area. Through face-to-face workshops and online efforts, The Yale Project on Climate Change Communication has sought to link the media and science communities. Meanwhile, powerful, widely read sites and blogs such as “Dot Earth,” hosted by the New York Times, Climate Central, Real Climate, The Conversation, and Climate Progress have fostered professional dialogue, greater awareness of science, and called attention to reporting and communications issues. Journalists and scientists have had ongoing conversations as part of the regular publication and reporting processes, and professional conferences and events bring the two communities together. Issues that continue to animate these discussions include conveying the degree to which climate science can be said to be “settled” and how to address uncertainty. Through some of these capacity-building efforts, news media have become increasingly aware of audience dynamics including how citizens respond to pessimistic reports, or “doom and gloom,” versus solutions-oriented reports. Professional dialogue has also revolved around the ethical dimensions of conveying a story at the level of global importance. Still, with issues of climate change communication on display for more than two decades now, certain tensions and dynamics persist. Notably, journalists seek clarity from scientists, while climate change experts and advocates for and against taking climate action often continue to demand that journalists resist the temptation to oversimplify or hype the latest empirical findings, while at the same time urging that journalists do not underestimate potential climate risks.

Article

Climate Change Conspiracy Theories  

Joseph E. Uscinski, Karen Douglas, and Stephan Lewandowsky

An overwhelming percentage of climate scientists agree that human activity is causing the global climate to change in ways that will have deleterious consequences both for the environment and for humankind. While scientists have alerted both the public and policy makers to the dangers of continuing or increasing the current rate of carbon emission, policy proposals intended to curb carbon emission and thereby mitigate climate change have been resisted by a notable segment of the public. Some of this resistance comes from those not wanting to incur costs or change energy sources (i.e., the carbon-based energy industry). Others oppose policies intended to address climate change for ideological reasons (i.e., they are opposed to the collectivist nature of the solutions usually proposed). But perhaps the most alarming and visible are those who oppose solutions to climate change because they believe, or at least claim to believe, that anthropogenic climate change is not really happening and that climate scientists are lying and their data is fake. Resistance, in this latter case, sometimes referred to as climate “skepticism” or “denialism,” varies from region to region in strength but worldwide has been a prominent part of a political force strong enough to preclude both domestic and global policy makers from making binding efforts to avert the further effects of anthropogenic climate change. For example, a 2013 poll in the United States showed that almost 40% believed that climate change was a hoax. Climate skeptics suggest the well-publicized consensus is either manufactured or illusory and that some nefarious force—be it the United Nations, liberals, communists, or authoritarians—want to use climate change as a cover for exerting massive new controls over the populace. This conspiracy-laden rhetoric—if followed to its logical conclusion—expresses a rejection of scientific methods, scientists, and the role that science plays in society. Skeptic rhetoric, on one hand, may suggest that climate skepticism is psychological and the product of underlying conspiratorial thinking, rather than cognitive and the product of a careful weighing of scientific evidence. On the other hand, it may be that skeptics do not harbor underlying conspiratorial thinking, but rather express their opposition to policy solutions in conspiratorial terms because that is the only available strategy when arguing against an accepted scientific consensus. This tactic of calling into question the integrity of science has been used in other scientific debates (e.g., the link between cigarette smoking and cancer). Opinion surveys, however, support the view that climate change denialism is driven at least partially by underlying conspiratorial thinking. Belief in climate change conspiracy theories also appears to drive behaviors in ways consistent with the behaviors of people who think in conspiratorial terms: Climate change conspiracy theorists are less likely to participate politically or take actions that could alleviate their carbon footprint. Furthermore, some climate skeptics reject studies showing that their skepticism is partially a product of conspiratorial thinking: They believe such studies are themselves part of the conspiracy.

Article

Shifting Roles of Science Journalists Covering Climate Change  

Michael Brüggemann

Climate journalism is a moving target. Driven by its changing technological and economic contexts, challenged by the complex subject matter of climate change, and immersed in a polarized and politicized debate, climate journalism has shifted and diversified in recent decades. These transformations hint at the emergence of a more interpretive, sometimes advocacy-oriented journalism that explores new roles beyond that of the detached conduit of elite voices. At the same time, different patterns of doing climate journalism have evolved, because climate journalists are not a homogeneous group. Among the diversity of journalists covering the issue, a small group of expert science and environmental reporters stand out as opinion leaders and sources for other journalists covering climate change only occasionally. The former group’s expertise and specialization allow them to develop a more investigative and critical attitude toward both the deniers of anthropogenic climate change and toward climate science.

Article

Framing of Climate Change in United States Science Education  

K.C. Busch

Although future generations—starting with today’s youth—will bear the brunt of negative effects related to climate change, some research suggests that they have little concern about climate change nor much intention to take action to mitigate its impacts. One common explanation for this indifference and inaction is lack of scientific knowledge. It is often said that youth do not understand the science; therefore, they are not concerned. Indeed, in science educational research, numerous studies catalogue the many misunderstandings students have about climate science. However, this knowledge-deficit perspective is not particularly informative in charting a path forward for climate-change education. This path is important because climate science will be taught in more depth as states adopt the Next Generation Science Standards within the next few years. How do we go about creating the educational experiences that students need to be able to achieve climate-science literacy and feel as if they could take action? First, the literature base in communication, specifically about framing must be considered, to identify potentially more effective ways to craft personally relevant and empowering messages for students within their classrooms.