1-4 of 4 Results  for:

  • Keywords: tectonics x
Clear all

Article

changing landscapes, natural causes of  

John Bintliff

The classical world witnessed many forms of landscape change in its physical geography, mostly due to longer-term geological and climatological processes, whilst only a minority were due purely to human action. The physical environment of Greek and Roman societies saw alterations through earthquakes, volcanic eruptions, sea-level fluctuations, erosion, and alluviation.

Already in Greek antiquity, Plato (Critias iii) observed how the Aegean physical landscape was being worn down over time as erosion from the uplands filled the lowland plains. Indeed, the Mediterranean region is amongst the most highly erodible in the world.1 However, scientific research in the field known as geoarchaeology has revealed a more complex picture than a continuous degradation of the ancient countryside.2

To uncover a more realistic picture of Mediterranean landscape change, the element of timescales proves to be central, and here the framework developed by the French historian Fernand Braudel3 provides the appropriate methodology. Braudel envisaged the Mediterranean past as created through the interaction of dynamic forces operating in parallel but on different “wavelengths” of time: the Short Term (observable within a human lifetime or less), the Medium Term (centuries or more, not clearly cognisant to contemporaries), and the Long Term (up to as much as thousands or millions of years, not at all in the awareness of past human agents).

Article

The Surface of Venus  

M.A. Ivanov and James W. Head

This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus (~1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise ~20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose ~60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, ~80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized ~2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.

Article

Tectonic Dynamics in the African Rift Valley and Climate Change  

Uwe Ring

The East African Rift System (EARS) transecting the high-elevation East African plateau is one of the most outstanding rift systems on earth. Rifting was caused by a huge uprising mantle plume under East Africa. Two distinct rift branches are distinguished: an older, volcanically very active Eastern Branch and a younger, much less volcanic Western Branch. The Eastern Branch is generally characterized by high elevation, whereas the Western Branch comprises a number of deep rift lakes (e.g., Lake Tanganyika, Lake Malaŵi). These differences reflect different plate strengths, the latter of which are largely governed by differences in how the mantle plume interacted with the East African lithosphere. Much of the topography forming the East African plateau has been caused by the uprising mantle plume. The onset of topographic uplift in the EARS is poorly dated but preceded graben development, the latter of which commenced at ~24 Ma in the Ethiopian Rift, at ~12 Ma in Kenya, and at ~10 Ma in the Western Branch. Increased uplift of the East African plateau since ~15–10 Ma might be connected to climate change in East Africa and human evolution. East Africa experienced cooling starting at 15.5–12.5 Ma that heralded profound faunal changes at 8–5 Ma, when the hominin lineage split from the chimpanzee lineage. The Pliocene is characterized by warm and wet climate between 5.3 and 3.3 Ma transitioning into a period of cooler and more arid conditions after ~3 Ma. The climate in the EARS is controlled by westerly monsoonal flow over equatorial West Africa and easterly monsoonal flow over the Indian Ocean. The uplifting East African plateau intercepted those winds and contributed to the increased aridification of East Africa.

Article

Icy Satellites: Interior Structure, Dynamics, and Evolution  

Francis Nimmo

This article consists of three sections. The first discusses how we determine satellite internal structures and what we know about them. The primary probes of internal structure are measurements of magnetic induction, gravity, and topography, as well as rotation state and orientation. Enceladus, Europa, Ganymede, Callisto, Titan, and (perhaps) Pluto all have subsurface oceans; Callisto and Titan may be only incompletely differentiated. The second section describes dynamical processes that affect satellite interiors and surfaces: tidal and radioactive heating, flexure and relaxation, convection, cryovolcanism, true polar wander, non-synchronous rotation, orbital evolution, and impacts. The final section discusses how the satellites formed and evolved. Ancient tidal heating episodes and subsequent refreezing of a subsurface ocean are the likeliest explanation for the deformation observed at Ganymede, Tethys, Dione, Rhea, Miranda, Ariel, and Titania. The high heat output of Enceladus is a consequence of Saturn’s highly dissipative interior, but the dissipation rate is strongly frequency-dependent and does not necessarily imply that Saturn’s moons are young. Major remaining questions include the origins of Titan’s atmosphere and high eccentricity, the regular density progression in the Galilean satellites, and the orbital evolution of the Saturnian and Uranian moons.